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Abstract

We present "the Prayer", a recipe of ten sequential steps for all portfolio man-
agers, risk managers, algorithmic traders across all asset classes and all invest-
ment horizons, to model and manage the P&L distribution of their positions.
For each of the ten steps of the Prayer, we introduce all the key concepts

with precise notation; we illustrate the key concepts by means of a simple case
study that can be handled with analytical formulas; we point the readers toward
multiple advanced approaches to address the non-trivial practical problems of
real-life risk modeling; and we highlight a non-exhaustive list of common pitfalls.
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Introduction
The quantitative investment arena is populated by different players: portfolio
managers, risk managers, algorithmic traders, etc. These players are further
differentiated by the asset classes they cover, the different time horizons of
their activities and a variety of other distinguishing features. Despite the many
differences, all the above "quants" are united by the common goal of correctly
modeling and managing the probability distribution of the prospective P&L of
their positions.
Here we present "the Prayer", a blueprint of ten sequential steps for quants

across the board to achieve their common goal, see Figure 1. By following the
Prayer, quants can avoid common pitfalls and ensure that they are not missing
important points in their models. Furthermore, quants are directed to areas of
advanced research that extends beyond the traditional quant literature. We use
the letter "P" to signify the true probability space of the buy-side P&L, which
stands in contrast to the risk-neutral probability space "Q" used on the sell-side
to price derivatives, see Meucci (2011b).

1: Quest for Invariance

2: Estimation

3: Projection

4: Pricing

5: Aggregation

6: Attribution

7: Evaluation

8: Optimization

10: Ex-Post Analysis

risk drivers invariants

invariants time series invariants distribution

invariants distribution risk drivers distribution

risk drivers distribution securities P&L distribution

securities P&L / portfolio positions portfolio P&L distribution

factors distribution / exposuresportfolio P&L distribution

factors distribution / exposures summary statistics / decomposition

satisfaction / constraints optimal positions

Estimation 
Risk

realized P&L allocation, selection, curve,…

9: Execution
target / market info / book info execution prices

Liquidity 
Risk

Figure 1: The "Prayer": ten-step blueprint for risk and portfolio management

Below we discuss the ten steps of the Prayer. Each step is concisely encapsu-
lated into a definition with the required rigorous notation. Then a simple case
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study with a portfolio of only stocks and call options illustrates the steps with
analytical solutions. Within each step, we prepare the ground for, and point
to, advanced research that fine-tunes the models, or enhances the models’ flexi-
bility, or captures more realistic and nuanced empirical features. Each of these
steps are deceptively simple at first glance. Hence, we highlight a few common
pitfalls to further clarify the conceptual framework.

P 1 Quest for Invariance
The "quest for invariance" is the first step of the Prayer, and the foundation
of risk modeling. The quest for invariance is necessary for the practitioners to
learn about the future by observing the past in a stochastic environment.

Key concept. The Quest for Invariance step is the process of extracting
from the available market data the "invariants", i.e. those patterns that
repeat themselves identically and independently (i.i.d.) across time. The
quest for invariance consists of two sub-steps: identification of the risk
drivers and extraction of the invariants from the risk drivers.

The first step of the quest for invariance is to identify for each security the
risk drivers among the market variables.

Key concept. The risk drivers of a given security are a set of random
variables

Yt ≡ (Yt,1, . . . , Yt,D)0 (1)

that satisfy the following two properties: a) the risk drivers Yt, together with
the security terms and conditions, completely specify the security price at
any given time t; b) the risk drivers Yt, although not i.i.d., follow a stochastic
process that is homogeneous across time, in that it is impossible to ascertain
the sequential order of the realizations of the risk drivers from the study of
the risk drivers past time series {yt}t=1,...,T .

The risk drivers are variables that fully determine the price of a security, but
in general they are not the price, because the price can be non-homogeneous
across time: think for instance of a zero-coupon bond, whose price converges to
the face value as the maturity approaches.
Homogeneity ensures that we can apply statistical techniques to the observed

time series of the risk drivers {yt}t=1,...,T and project future distributions. Note
that we use the standard convention where lower-case letters such as yt de-
note realized variables, whereas upper-case letters such as Yt denote random
variables.
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Illustration. Consider first the asset class of stocks. Denote by St
the random price of one stock at the generic time t. The log-price of the
stock Yt ≡ lnSt, possibly adjusted by reinvesting the dividends, is not i.i.d.
across time. However, the dynamics of the stock log-price is homogeneous
across time: it is not possible to isolate any special period in the stock’s
future evolution that will distinguish its price pattern from a nearby period.
Hence, to project into the future, the random variable Yt ≡ lnSt is a suitable
candidate risk driver for the stock price St.
Next, consider a second asset class, namely stock options. Denote by

Ct,k,e the random price of a European call option on the stock, where k is a
given strike and e is the given expiry date, or time of expiry. The call price,
or its log-price, is not a risk driver, because the presence of the expiry date
breaks the time homogeneity in the statistical behavior of the call option
price.
In order to identify the risk drivers behind the call option, we transform

the price into an equivalent, but homogeneous, variable, namely the implied
volatility at a given time to expiry. More precisely, consider the Black-Scholes
pricing formula

Ct,k,e ≡ cBS (lnSt − ln k,Σt, υt) , (2)

where υt ≡ e − t is the time to expiry, Σt is the yet to be defined implied
volatility for that time to expiry, and cBS is the Black-Scholes formula

cBS (m,σ, υ) ≡ em

k
Φ(

m+ rυ + σ2υ/2

σ
√
υ

)− e−rυΦ(
m+ rυ − σ2υ/2

σ
√
υ

), (3)

with Φ the standard normal cdf. At each time t, the price Ct,k,e in (2) is
observable, and so are St and υt. Therefore, the option formula (2) implies
a value for Σt, which for this reason is called implied volatility.
The implied volatility for a given time to expiry, or better, the logarithm

of the implied volatility lnΣt, displays a homogeneous behavior through time
and thus it is a good candidate risk driver for the option. From the option
formula (2) we observe that the implied volatility alone is not sufficient to
determine the call price in the future, as, in addition, the log-price lnSt and
the time to expiry υt are needed. Since the time to expiry is deterministic,
the call option requires two risk drivers to fully determine its priceµ

Ys,t
Yσ,t

¶
≡
µ
lnSt
lnΣt

¶
. (4)

The second step of the quest for invariance is the extraction of the invariants,
i.e. the repeated patterns, from the homogeneous series of the risk drivers.
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Key concept. The invariants are shocks that steer the stochastic
process of the risk drivers Yt over a given time step t→ t+ 1.

εt→t+1 ≡ (ε1,t→t+1, . . . , εQ,t→t+1)
0 (5)

The invariants satisfy the following two properties: a) they are identically
and independently distributed (i.i.d.) across different time steps; b) they
become known at the end of the step, i.e. at time t+ 1.

Note that each of the D risk drivers (1) can be steered by one or more
invariants, therefore Q ≥ D.
To determine whether a variable is i.i.d. across time, the easiest test is to

scatter-plot the series of the variable versus its own lags. If the scatter-plot,
or better, its location-dispersion ellipsoid, is a circle, then the variable is a
good candidate for an invariant. For more on this and related tests see Meucci
(2005a).
Being able to identify the invariants that steer the dynamics of the risk

drivers is of crucial importance because it allows us to project the market ran-
domness to the desired investment horizon. Often, practitioners make the mis-
take of projecting variables they have on hand, most notably returns, instead
of the invariants. This, of course, leads to incorrect measurement of risk at the
horizon, and thus to suboptimal trading decisions.
The stochastic process for the risk drivers Yt is steered by the randomness

of the invariants εt→t+1. The most basic dynamics, yet the most statistically
robust, which connects the invariants εt→t+1 with the risk drivers Yt is the
random walk

Yt+1 = Yt + εt→t+1. (6)

More advanced processes for the risk drivers account for such features as auto-
correlations, stochastic volatility, and long memory. We refer to Meucci (2009b)
for a review of these more general processes and how they related to random
walk and invariants both in discrete and in continuous time, with theory, case
studies, and code. We refer to Meucci (2009c) for the multivariate case, and
how it relates to cointegration and statistical arbitrage.

Illustration. Consider our first asset class example, the stock. As dis-
cussed, the only risk driver is the log-price Yt ≡ lnSt. The above scatter-plot
generally indicates that the compounded return ln (St+1/St) are approxi-
mately invariants

εt→t+1 ≡ lnSt+1 − lnSt. (7)

Therefore the risk driver Yt ≡ lnSt follows a random walk, as in (6).
Now, consider our second asset class, the call option example. The em-

pirical scatter-plot shows that the changes of the log-implied volatility are
approximately i.i.d. across time. Furthermore, our analysis of the stock ex-
ample (7) implies that the changes of the log-price are invariants. Therefore,
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using notation similar to (4), we obtainµ
εs,t→t+1

εσ,t→t+1

¶
≡
µ
lnSt+1
lnΣt+1

¶
−
µ
lnSt
lnΣt

¶
. (8)

This is also a random walk as in (6). Notice that this is a multivariate random
walk.

The outcome of the quest for invariance, i.e. the set of risk drivers and their
corresponding invariants, depends on the asset class and on the time scale of
our analysis. For instance, for interest rates a simple random walk assumption
(6) can be viable for time steps of one day, but for time steps of the order of one
year mean-reversion becomes important. Similarly, for stocks at high frequency
steps of the order of fractions of a second, the very time step becomes a random
variable, which calls for its own invariant. We refer to Meucci (2009b) for a
review.

Pitfalls. "...The random walk is a stationary process...". A random walk,
such as Yt in (6) is not stationary. The steps of the random walk εt→t+1 are
stationary, and actually they are the most stationary of processes, namely in-
variants.
"...The random walk is too crude an assumption...". Once the data is suit-

ably transformed into risk drivers, the random walk assumption is very hard to
beat in practice, see Meucci (2009b).
"...Returns are invariants ...". Returns are not invariants in general. In our

call option example, the past returns of the call option price do not teach us
anything about the future returns of the option.

P 2 Estimation
As highlighted in the Quest for Invariance Step P 1, the stochastic behavior of
the risk drivers is steered by the "invariants". Once the invariants have been
identified, their distribution can be estimated from empirical analysis and from
other sources of information.
Because of the invariance property, the distribution of the invariants does

not depend on the specific time t. We represent this distribution in terms of
its probability density function (pdf) fε. Note that, although the invariants
are distributed independently across time, multiple invariants can be correlated
with each other over the same time step. Therefore fε needs to be modeled as
a multivariate distribution.

Key concept. The Estimation Step is the process of fitting a distrib-
ution fε to both the observed past realizations {�t→t+1} of the invariants
ε and optionally additional information iT that is available at the current
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time T
{�t→t+1}t=1,...,T , iT 7→ fε. (9)

Simple estimation approaches only process the time series of the invari-
ants {�t→t+1}, but various advanced techniques also process information
iT such as market-implied forward looking quantities, subjective Bayesian
priors, etc.

The simplest of all estimators for the invariants distribution is the non-
parametric empirical distribution, justified by the law of large numbers, i.e.
"i.i.d. history repeats itself". The empirical distribution assigns an equal prob-
ability 1/T to each of the past observations in the series {�t}t=1,...,T of the
historical scenarios.
Alternatively, for the distribution of the invariants, one can make parametric

assumptions such as multivariate normal, elliptical, etc.

Illustration. To illustrate the parametric approach, we consider our
example (8), where the invariants ε are changes in moneyness and changes
in log-implied volatility from t to t+1. We can assume that the distribution
fε is bivariate normal with 2× 1 expectation vector µ ≡ (µs, µσ)

0 and 2× 2
covariance matrix σ2 as belowµ

εs,t→t+1

εσ,t→t+1

¶
∼ N(

µ
µs
µσ

¶
,

µ
σ2s ρσsσσ

ρσsσσ σ2σ

¶
). (10)

The expectation can be estimated with the sample mean µ ≡ 1
T

P
t �t, and

the covariance with the sample covariance σ2≡ 1
T

P
t (�t − µ) (�t − µ)0, where

0 denotes the transpose.

In large multivariate markets it is important to impose structure on the
correlations of the distribution of the invariants fε. This is often achieved in
practice by means of linear factor models. Linear factor models are an essential
tool of risk and portfolio management, as they play a key role in the Estimation
Step P 2, as well as, among others, in the Attribution Step P 6 and the Opti-
mization Step P 8. We refer to Meucci (2010h) for a thorough review of theory,
code, empirical results, and pitfalls of linear factor models in these three and
other contexts.
A highly flexible approach to estimate and model distributions is provided by

the copula-marginal decomposition, see e.g. Cherubini, Luciano, and Vecchiato
(2004). In order to use this decomposition in practice, as well as any alternative
outcome of the estimation process, the only feasible option is to represent dis-
tributions in terms of historical scenarios similar to the above, or Monte Carlo
generated scenarios, see Meucci (2011a).
An important advanced topic is estimation risk. It is important to empha-

size that, regardless how advanced an estimation technique is applied to model
the joint distribution of the invariants, the final outcome will be an estimate, i.e.
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only an approximation, of the true, unknown, distribution of the invariants fε.
Estimation risk is the risk stemming from using an estimate of the invariants
distribution in the process of managing the portfolio’s positions, instead of the
true, unknown distribution of the invariants.
Estimation risk, which first appears here in the context of the Estimation

Step P 2, affects the cornerstones of risk and portfolio management, namely the
Evaluation Step P 7, the Optimization Step P 8, and the Execution Step P 9. We
will explore in those steps techniques that attempt to address estimation risk,
which include scenario analysis, Fully Flexible Probabilities, robust estimation
and optimization, multivariate Bayesian statistics, etc.

Pitfall. "...In order to estimate the return of a bond I can analyze the time
series of the past bond returns...". The price of bonds with short maturity will
soon converge to its face value. As a result, the returns are not invariants, and
thus their past history is not representative of their future behavior. Estimation
must always be linked to the quest for invariance.
"...In markets with a large number Q of invariants I use a cross-sectional

linear factor model on returns with K ¿ Q factors. This reduces the covariance
parameters to be estimated from ≈ Q2/2 to ≈ K2/2 + Q.". A cross-sectional
factor model has the same number of unknown quantities as a time-series model.
The cross-sectional factors are typically autocorrelated. The residuals in both
cross-sectional and time-series models are not truly idiosyncratic, as they display
non-zero correlation with each other. For more on these and related pitfalls for
linear factor models, see Meucci (2010h).

P 3 Projection
Ultimately we are interested in the value of our positions at the investment
horizon. In order to determine the distribution of our positions, we must first
determine the distribution of the risk drivers at the investment horizon. This
distribution, in turn, is obtained by projecting to the horizon the invariants
distribution, obtained in the Estimation Step P 2.
We denote the current time as t ≡ T and the generic investment horizon

t ≡ T + τ , where τ is the distance to the horizon, say, one week.

Key concept. The Projection Step is the process of obtaining the
distribution at the investment horizon T + τ of the relevant risk drivers
Yt from the distribution of the invariants and additional information iT
available at the current time T

fε , iT 7→ fYT+τ . (11)

In order to project the risk drivers we must go back to their connection with
the invariants analyzed in the Quest for Invariance Step P 1.
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If the drivers evolve as a random walk (6), then by recursion of the random
walk definition Yt+2 = Yt+1 + εt+1→t+2 = Yt + εt→t+1 + εt+1→t+2 we obtain
that the risk drivers at the horizon YT+τ are the current observable value yT
plus the sum of all the intermediate invariants

YT+τ = yT + εT→T+1 + · · ·+ εT+τ−1→T+τ . (12)

Using the independence of the invariants, (12) yields for the variance

V {YT+τ} = V {εT→T+1}+ · · ·+V {εT+τ−1→T+τ} . (13)

Since all the ε’s in (12) are i.i.d., all the variances in (13) are equal, and thus
we obtain the well-known "square-root rule" for the projection of the standard
deviation Sd {YT+τ} =

√
τ Sd {ε}. Note that we did not make any distributional

assumption such as normality to derive the square-root rule.
Simple results to project other moments under the random walk assumption

(6), such as skewness and kurtosis, can be found in Meucci (2010a) and Meucci
(2010i). Projecting the whole distribution is more challenging, but can still be
accomplished using Fourier transform techniques, see Albanese, Jackson, and
Wiberg (2004).
In the more general case where the drivers do not evolve as a random walk

(6), the projection can be obtained by redrawing scenarios according to the given
dynamics, see e.g. Meucci (2010b) for the parametric case and Paparoditis and
Politis (2009) for the empirical distribution.

Illustration. In our oversimplified normal example the projection can
be performed analytically. Indeed, from the normal distribution of the in-
variants (10) it follows, from the preservation of normality with the sum
of independent normal variables, that the sum of the invariants is normal
εT→t+τ ∼ N(τµ, τσ2). Thus we obtain for the distribution of the two risk
drivers at the horizonµ

lnST+τ
lnΣT+τ

¶
∼ N(

µ
ln sT
lnσT

¶
+ τ

µ
µs
µσ

¶
, τ

µ
σ2s ρσsσσ

ρσsσσ σ2σ

¶
). (14)

Pitfall. "...To project the market I assume normality and therefore I mul-
tiply the standard deviation by the square root of the horizon...". The square
root rule is true for all random walks with finite-variance invariants, regardless
of their distribution. However, the square-root rule only applies to the stan-
dard deviation and does not allow to determine all the other moments of the
distribution, unless the distribution is normal.

P 4 Pricing
Now that we have the distribution of the risk drivers at the horizon YT+τ from
the Projection Step P 3, we are ready to compute the distribution of the security
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prices in our book. Recall that the value of the securities at the investment
horizon, by design, is fully determined by a) risk drivers at the horizon YT+τ
and b) non-random information iT known at the current time, such as terms
and conditions

PT+τ = p (YT+τ ; iT ) . (15)

Then, given the security price at the horizon PT+τ , the security P&L from the
current date to horizon ΠT→T+τ is the difference between the horizon value
(15), which is a random variable, and the current value, which is observable and
thus part of the available information set iT . Thus the horizon profit function
reads

ΠT→T+τ = p (YT+τ ; iT )− pT . (16)

Note that the P&L must be adjusted for coupons and dividends, either by
reinvesting them in the pricing function (15), or by an additional cash flow term
in (16).

Key concept. The Pricing Step is the process of obtaining the distri-
bution of the securities P&L’s over the investment horizon from the distri-
bution of the risk drivers at the horizon and current information such as
terms and conditions, by means of the pricing function

fYT+τ , iT 7→ fΠT→T+τ
(17)

At times it is convenient to approximate the pricing function (15) by its
Taylor expansion

p (y; iT ) = p (y; iT )+(y − y)0 ∂yp (y; iT )+(y − y)0
∂yyp (y; iT )

2
(y − y)+· · · (18)

where y is a significative value of the risk drivers, often the current value y ≡ yT ;
∂yp (y; iT ) denotes the vector of the first derivatives; and ∂yyp (y; iT ) denotes
the matrix of the second cross-derivatives.
Depending on its end users, the coefficients in the Taylor approximation

(18) are known under different names. In the derivatives world, they are called
the "Greeks": theta, delta, gamma, vega, etc. In the fixed-income world the
coefficients are called carry, duration and convexity.

Illustration. In our stock example, the single risk driver is the log-price
Yt ≡ lnSt. Therefore the horizon pricing function (15) reads p (y) = ey. Its
Taylor approximation reads p (y) ≈ eyT (1 + y − yT ). Then the P&L of the
stock (16) reads

Πs,T→T+τ ≈ sT (lnST+τ − ln sT ) . (19)

Hence, from the distribution of the risk drivers (14), it follows that the dis-
tribution of the stock P&L is approximately normal

Πs,T→T+τ ∼ N(τsTµs, τs2Tσ2s). (20)
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For our call option with strike k and expiry e, the risk drivers are the
log-price Ys,t ≡ lnSt and the log-implied volatility Yσ,t ≡ lnΣt, as in (4).
The horizon pricing function (15) follows from the Black-Scholes formula (2)
and reads

pBS (ys, yσ; iT ) = cBS (ys − ln k, eyσ , e− T − τ) . (21)

When the investment horizon is much shorter than the time to expiry of
the option, i.e. τ ¿ e − T , the following first-order Taylor approximation
suffices to proxy the price pBS (ys, yσ; iT ) ≈ pBS (ys,T , yσ,T ; iT ) + δBS,T ·
(ys − ys,T ) + vBS,T · (yσ − yσ,T ), where δBS,T ≡ ∂pBS (ys,T , yσ,T ) /∂ys is the
option’s current Black-Scholes "delta" and vBS,T ≡ ∂pBS (ys,T , yσ,T ) /∂yσ is
the option’s current Black-Scholes "vega". Then the P&L of the call option
(16) reads

Πc,T→T+τ ≈ (lnST+τ − ln sT ) δBS,T + (lnΣT+τ − lnσT ) vBS,T . (22)

We stated in the distribution of the risk drivers (14) that the log-changes
in (22) are jointly normal. Therefore, the distribution of the P&L is normal,
because the linear combination of jointly normal variables is normal

Πc,T→T+τ ∼ N(τµc, τσ2c), (23)

where

µc ≡ δBS,Tµs + vBS,Tµσ (24)

σ2c ≡ δ2BS,Tσ
2
s + v2BS,Tσ

2
σ + 2δBS,T vBS,Tρσsσσ. (25)

Notice how the expectation of the call option’s P&L depends on the expecta-
tions of the stock compounded return and the expectation of the log-changes
in implied volatility, multiplied by the horizon τ . A similar relationship holds
for the standard deviation of the call’s P&L.

It is worth noticing that pricing becomes a surprisingly easy task when the
distribution of the risk drivers is represented in terms of scenarios, as (16) is
simply repeated scenario-by-scenario by inputting discrete realized risk drivers
values.
We conclude the Pricing Step by highlighting two problems. First, a data

and analytics problem: in many companies there might not be readily available
pricing functions with all terms and conditions.
Second, the problem of liquidity risk. The pricing step assumes the ex-

istence of one single price, which is fully determined by the risk drivers Pt =
p (Yt; iT ) as in (15). In reality, for any security there exist multiple possible
prices, which represent supply and demand. The actual execution price de-
pends on supply and demand, on the size and style of the transaction, and on
other factors. As we will see, liquidity risk, which first comes to the surface
here in the Pricing Step, affects with increasing intensity the Evaluation Step P
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7, the Optimization Step P 8, and the Execution Step P 9. We will discuss in
those steps methodologies to address liquidity risk.

Pitfall. "...The delta approximation gives rise to parametric risk models
that assume normality...". The Taylor approximation of the pricing function
can be paired with any distributional assumption, not necessarily normal, on
the risk drivers.
"...The goodness of the Taylor approximation depends on the specific secu-

rity...". The goodness of the Taylor approximation depends on the security and
on the investment horizon: due to the square-root propagation of the standard
deviation (13), the longer the horizon, the wider the distribution of the risk
drivers. Therefore the approximation worsens with longer horizons.

P 5 Aggregation
The Pricing Step P 4 yields the projected P&L’s of the single securities. The
Aggregation Step generates the P&L distribution for a portfolio with multiple
securities.
Consider a market of N securities, whose P&L’s Π ≡ (Π1, . . . ,ΠN )

0 are
obtained from the horizon pricing function (16). Notice that for simplicity we
drop the subscript T → T + τ , because it is understood that from now on the
Prayer focuses on the projected P&L between now and the future investment
horizon.
Consider a portfolio, which is defined by the holdings in each position at

the beginning of the period h ≡ (h1, . . . , hN )0. The holdings are the number of
shares for stocks, the number of standardized-notional contracts for swaps, the
number of standardized-face-value-bond for bonds, etc.
The portfolio P&L is determined by the "conservation law of money": the

total portfolio P&L is the sum of the holding in each security times the P&L
generated by each security

Πh =
PN

n=1 hnΠn, (26)

where we have assumed no rebalancing during the period.

Key concept. The Aggregation Step is the process of computing the
distribution of the portfolio P&L Πh by aggregating the joint distribution
of the securities P&L with the given holdings

fΠ , h 7→ fΠh (27)

Given one single scenario for the risk drivers YT+τ and thus for the securities
P&L’s in (16), the computation of the portfolio P&L Πh is immediately deter-
mined by the conservation law of money (26) as the sum of the single-security
P&L’s in that scenario.
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However, to arrive at the whole continuous distribution of the portfolio P&L
fΠh we must compute multiple integrals

fΠh (x) dx =

Z
h0π∈dx

fΠ (π1, . . . , πN ) dπ1 · · · dπN , (28)

which is in general a very challenging operation. On the other hand, the com-
putation of the aggregate P&L distribution becomes trivial when the market
is represented in terms of scenarios, as the conservation law of money (26) is
simply repeated in a discrete way scenario-by-scenario.

Illustration. In our example with a stock and a call option, whose P&L’s
are normally distributed, suppose we hold a positive or negative number hs
of shares of the stock and a positive or negative number hc of the call. Then
the total P&L follows from applying the aggregation rule (26) to the stock
P&L (19) and the option P&L (22) and thus reads

Πh ≈ hssT ln
ST+τ
sT

+ hc(δBS,T ln
ST+τ
sT

+ vBS,T ln
ΣT+τ
σT

) (29)

= (hssT + hcδBS,T ) ln
ST+τ
sT

+ hcvBS,T ln
ΣT+τ
σT

.

Thus, from the joint normal assumption (14) and the fact that sums of jointly
normal variables are normal, the total portfolio is normally distributed. Iso-
lating the horizon τ we obtain

Πh ∼ N(τµh, τσ2h), (30)

where

µh ≡ (hssT + hcδBS,T )µs + hcvBS,Tµσ (31)

σ2h ≡ (hssT + hcδBS,T )
2
σ2s + h2cv

2
BS,Tσ

2
σ (32)

+2 (hssT + hcδBS,T )hcvBS,Tρσsσσ

Notice how both expectation and variance follow from the projection to the
horizon of the invariants distribution (10).

Above we described in full the aggregation step. However, this topic is not
complete without comparing the aggregation of the P&L with an equivalent,
more popular, yet more error-prone, formulation in terms of returns.
The reader is probably familiar with the notion of returns, which allow for

performance comparisons across different securities, and portfolio weights. The
return is the ratio of the P&L over the current price RT→T+τ ≡ ΠT→T+τ/pT .
The weight of a security is its relative market value within the portfolio wn ≡
hnpn,T /

P
m hmpm,T and satisfies the "pie-chart" rule

P
nwn = 1.

The conservation law of money (26) becomes easier to interpret in terms of
returns and weights, as the total portfolio return is the weighted average of the
single-security returns

Rh =
PN

n=1wnRn, (33)
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where we dropped the horizon subscript for simplicity.
In the Prayer, we refrain from conceptualizing the aggregation and the sub-

sequent steps in terms of returns, and we rely on returns only for interpretation
purposes, for the following reasons.
First, P&L and holdings are always unequivocal, whereas returns and weights

are subjective. Indeed, for leveraged securities, such as swaps and futures, the
definition of returns and weights is not straightforward. In these circumstances
we need to introduce a subjective "basis" denominator d known at the begin-
ning of the return period, such that the return R ≡ Π/d is always defined, and
so is the weight, see Meucci (2010f).
Second, returns are often confused with the invariants, and thus incorrectly

used for estimation.
Third, the linear returns (pT+τ − pT ) /pT which appear in the aggregation

rule (33) are often confused with the compounded returns ln (pT+τ/pT ), which
do not satisfy the aggregation rule.

Pitfall. "...Returns are invariants. Therefore we can estimate their distrib-
ution from their past realizations and aggregate this distribution to the portfolio
level using the weights...". Only in asset classes such as stocks do the concepts
of invariant and return dangerously overlap. Furthermore, even for stocks, the
projection does not apply directly to the returns, and thus one has to follow all
the steps of the Prayer, see Meucci (2010e).

P 6 Attribution
With the Aggregation Step P 5, we have arrived at the projected portfolio
P&L distribution. In order to assess, manage, and hedge a portfolio with h ≡
(h1, . . . , hN )

0 holdings, it is important to ascertain the sources of risk that affect
it. Given the distribution of the projected portfolio P&L, we would like to
identify a parsimonious set of relevant factors Z ≡ (Z1, . . . , ZK)

0 that drive
the portfolio P&L and whose joint distribution with the portfolio P&L fΠh,Z is
known.
More specifically, because the identification of the factors should be action-

able and easy to interpret, the attribution should be linear. Thus, the attribu-
tion is defined by coefficients bh ≡ (bh,1, . . . , bh,K)0, as follows

Πh =
PK

k=1 bh,kZk. (34)

Note that the attribution to arbitrary factors in general gives rise to a portfolio-
specific residual. The formulation (34) covers this case, by setting such residual
as one of the factors Zk, with attribution coefficient bh,k ≡ 1.
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Key concept. The Attribution Step decomposes the projected portfolio
P&L linearly into a set ofK relevant risk factors Z, yielding theK portfolio-
specific exposures bh

fΠh,Z 7→ bh (35)

The relevant question is which attribution factors Z to use. Naturally, dif-
ferent intentions of the trader or portfolio manager call for different choices of
attribution factors.
The most trivial attribution assigns the projected portfolio P&L back to

the contributions from each security, i.e. Zk ≡ Πk is the projected P&L from
the generic k-th security, bh,k ≡ hk are the holdings of the k-th security in the
portfolio, and the number of factors is K ≡ N , i.e. the number of securities.
Then the attribution equation (34) becomes the conservation law of money (26).
If on the other hand the trader wishes to hedge a given risk, say volatility risk,

then he will choose as a factor Zk the projected P&L Πk of a truly actionable
instrument, such as a variance swap, which might or might not have been part
of the original portfolio.
Alternatively, the portfolio manager might wish to monitor the exposure to

a given risk factor, without the need to hedge it. If for instance the manager
is interested in the total "vega" of its portfolio for example, then he will use
changes in implied volatility as one of the risk factors.
Furthermore, in case there exist too many possible factors or hedging instru-

ments, the manager will want to express his portfolio as a function of only those
few factors that truly affect the P&L.
Notice that (34) is a portfolio-specific top-down linear factor model. The

flexible choice of the optimal attribution factors Z and optimal exposures bh
with flexible constraints which define this linear factor model, along with its
connections with the linear factor models introduced in the Estimation Step P
2, is the spirit of the "Factors on Demand" approach in Meucci (2010c).

Illustration. In our stock and option example, we look at a simple attri-
bution (34) to the original sources of risk. Accordingly, we set as attribution
factors the stock compounded return Zs ≡ ln (ST+τ/sT ) and the implied
volatility log-change Zσ ≡ ln (ΣT+τ/σT ). Thus, we have K ≡ 2 factors.
From the expression of the portfolio P&L (29) we immediately obtain

Πh = bh,sZs + bh,σZσ, (36)

where the total exposures to Zs and Zσ read respectively

bh,s ≡ hssT + hcδBS,T , bh,σ ≡ hcvBS,T . (37)
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Pitfall. "...If I use a factor model to estimate the returns distribution of
some stocks and I want my portfolio to be neutral to a given factor, I simply make
sure that the exposure to that factor is zero in my portfolio...". Ensuring a null-
exposure coefficient for one factor does not guarantee immunization, because
the given factor is in general correlated with other factors. To provide full
immunization we must resort to Factors on Demand.

P 7 Evaluation
Up to this step, we have obtained the projected distribution of the P&L Πh
of a generic portfolio with holdings h and attributed it to relevant risk factors
Z. In the evaluation step, the goal is to compare the P&L distribution of the
current portfolio h with the P&L distribution of a different potential portfolioeh. Evaluation is one of the risk and portfolio manager’s primary tasks.
Since each portfolio is represented by the whole projected distribution of

its P&L, it is not possible to compare two portfolios in terms of which P&L
is higher. To obviate this problem, typically practitioners rely on one or more
summary statistics for the projected P&L distribution.
The most standard statistics are the expected value, the standard devia-

tion and the Sharpe ratio, also known respectively as expected outperformance,
tracking error and information ratio in the case of benchmarked portfolio man-
agement. Other measures include the value at risk (VaR), the expected shortfall
(ES or CVaR), skewness, kurtosis, etc. More innovative statistics include co-
herent measures of risk aversion, see Artzner, Delbaen, Eber, and Heath (1997);
spectral measures of risk aversion, see Acerbi (2002); and measures of diversifi-
cation, such as the "effective number of bets", see Meucci (2009a).
We emphasize that, in this context, all the above are ex-ante measures of

risk for the projected portfolio P&L Πh, rather than ex-post measures of per-
formance.

Key concept. The Evaluation Step consists of two sub-steps. The first
sub-step is the computation of one or more summary statistics S for the
projected distribution of the given portfolio P&L Πhwith holdings h

fΠh 7→ S (h) . (38)

The second, optional, sub-step is the attribution of the summary statistics
S(h) to the fully flexible attribution factors Z utilized in the Attribution
Step

fΠh,Z , bh 7→ S (h) =
PK

k=1 bh,kSk, (39)

where bh,k represents the "amount" of the factor Zk in the portfolio pro-
jected P&L and Sk represents the "per-unit" contribution to the statistic
S (h) from the factor Zk.
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Illustration. In our simple normal market of one stock and one option,
any portfolio is determined by the holdings h ≡ (hs, hc)0. Let us focus on the
first sub-step (38) and let us compute the most basic summary statistics of
the P&L, namely its expected value. Then from the distribution of a generic
portfolio P&L (30) we obtain

S (hs, hc) ≡ E {Πh} = τµh = τhssTµs + τhc (δBS,Tµs + vBS,Tµσ) . (40)

Similarly, if the manager cares about a measure of volatility, a suitable mea-
sure is the standard deviation

S (hs, hc) ≡ Sd {Πh} =
√
τσh, (41)

where σh is defined in (32).

For the optional summary statistics attribution sub-step (39), a simple linear
decomposition that mirrors the attribution equation (34) is not feasible. For in-
stance, for the standard deviation it is well known that Sd {Πh} 6=

PK
k=1 bh,k Sd {Zk}.

However, notice that numerous summary statistics such as expectation, stan-
dard deviation, VaR, ES, and spectral measures display an interesting feature:
they are homogeneous, i.e. by doubling all the holdings in the portfolio, those
summary statistics also double. As proved by Euler, for homogeneous statistics
the following identity holds true

S (h) =
PK

k=1 bh,k
∂S (h)
∂bh,k

. (42)

Therefore, if the summary statistics is homogeneous, we can take advantage
of Euler’s identity (42) to perform the summary statistics attribution sub-step
(39), which becomes (42).
In particular, for the VaR, the decomposition (42) amounts to the classical

definition of marginal contributions to VaR, see e.g. Garman (1997), and, for
the standard deviation, the decomposition (42) amounts to the "hot-spots", see
Litterman (1996).
We recall that the simplest case of the flexible, top-down, Factors on De-

mand attribution of the portfolio P&L (34) is the bottom-up attribution to the
individual securities through the conservation law of money (26). Similarly, the
simplest case of attribution of the summary statistics (39) is the attribution of
the summary statistics S (h) to the individual securities

S (h) =
PN

n=1 hn
∂S (h)
∂hn

. (43)

Illustration. To illustrate the attribution to a summary statistic of the
portfolio projected P&L, we rely on our example of a stock and a call option.
We focus on the standard deviation (41).
The exposure bh,s of the projected portfolio P&L (34) to the stock factor

Zs ≡ ln (ST+τ/sT ) and the exposure bh,σ to the implied volatility factor
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Zσ ≡ ln (ΣT+τ/σT ) were calculated in (37). Then the attribution (42) to each
of the two risk drivers of the standard deviation of the projected portfolio
P&L becomesÃ

∂ Sd{Πh}
∂bh,s

∂ Sd{Πh}
∂bh,σ

!
=

√
τ

σh

µ
σ2s ρσsσσ

ρσsσσ σ2σ

¶µ
hssT + hcδBS,T

hcvBS,T

¶
, (44)

where σh is defined in (32), see the proof in the appendix. The total contri-
butions to risk from the factors follow by multiplying the entries on the left
hand side of (44) by the respective exposures (37).
For the attribution to the individual securities, i.e. the stock and the call

option, a similar calculation yieldsÃ
∂ Sd{Πh}

∂hs
∂ Sd{Πh}

∂hσ

!
=

√
τ

σh

µ
s2Tσ

2
s σΠs,Πc

σΠs,Πc σ2Πc

¶µ
hs
hc

¶
, (45)

where

σ2Πc ≡ σ2sδ
2
BS,T + σ2σv

2
BS,T + 2σσσsρδBS,T vBS,T (46)

σΠs,Πc ≡ δBS,T sTσ
2
s + sT vBS,Tσσσsρ, (47)

see the proof in the appendix. The total contributions to risk from the stock
and the call option follow by multiplying the entries on the left hand side of
(45) by the respective holdings hs and hc.

The computation of the summary statistics S (h) is hard to perform in prac-
tice, unless the market is normal as in our example (41), because complex mul-
tiple integrals are involved. For instance, using the same notation as in (28), the
VaR with confidence c is defined by

1− c ≡
Z
h0π≤V aR

fΠ (π1, . . . , πN ) dπ1 · · · dπN . (48)

To address this problem, one can rely on approximation methods such as the
Cornish-Fisher expansion, or the elliptical assumption, see Meucci (2005a) for
a review. The computation of the partial derivatives for the decomposition (42)
of the summary statistics is even harder, unless the market is normal as in our
example (44)-(45). Fortunately, these computations become simple when the
market distribution is represented in terms of scenarios, see Meucci (2010c).
Before concluding, we must address two key problems of risk and portfo-

lio management: estimation risk, introduced in the Estimation Step P 2, and
liquidity risk, introduced in the Pricing Step P 4.
As far as estimation risk is concerned, the projected distribution of the P&L

Πh that we are evaluating is only an estimate, not the true projected distribu-
tion, which is unknown. Therefore, estimation risk affects the Evaluation Step.
As a simple, effective way to address this issue, risk managers perform stress-
test or scenario analysis, which amounts to evaluating the P&L under specific,
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typically extreme or historical, realizations of the risk drivers. A more advanced
general approach to stress testing is "Fully Flexible Probabilities", see Meucci
(2010d), which allows the portfolio manager to assign non-equal probabilities
to the historical scenarios, according to such criteria as exponential smoothing,
rolling window, kernel conditioning and, more flexibly, the generalized Bayesian
approach "entropy pooling".
As far as liquidity risk is concerned, the projected distribution of the P&L

Πh that we are evaluating does not account for the effect of our own trading. A
theory to correct for this effect in the context of risk management was developed
in Cetin, R., and Protter (2004) and Acerbi and Scandolo (2007). For an easy
to implement liquidity adjustment to the P&L distribution refer to Meucci and
Pasquali (2010).

Pitfall. "...To compute the volatility of the P&L we can simply run the
sample standard deviation of the past P&L realizations...". The history of the
past P&L can be informative only if the P&L is an invariant. This seldom
happens, consider for instance the P&L generated by a buy-and-hold strategy
in one call option. In general, one has to follow all the steps of the Prayer to
compute risk numbers.
Pitfall. "...To compute the VaR I can multiply the standard deviation by

a threshold number such as 1.96...". This calculation is only correct with very
specific, unrealistic, typically normal, models for the market distribution.

P 8 Optimization
In the Evaluation Step P 7, the risk manager or portfolio manager obtains
a set of computed summary statistics S to assess the goodness of a portfolio
with holdings h. These statistics can be combined in a subjective manner to
give rise to new statistics. For instance, a portfolio with expected return of
2% and standard deviation of 5% could be good for an investor with low risk
tolerance, but bad for an aggressive trader. In this case, a trade-off statistic
S (h) ≡ E {Πh} − γ Sd {Πh} can rank the portfolios according to the prefer-
ences of the investor, reflected in the parameter γ. Alternatively, we can use
a subjective utility function u and rank portfolios based on expected utility
S (h) ≡ E {u (Πh)}.
More in general, we call index of satisfaction the function that translates

the P&L distribution of the portfolio with holdings h ≡ (h1, . . . , hN )
0 into a

personal preference ranking. We denote the index of satisfaction by the general
notation S (h) used in (38) for the evaluation summary statistics, because any
index of satisfaction is also a summary statistic.
Given an index of satisfaction S (h), it is now possible to optimize the hold-

ings h accordingly. Portfolio optimization is the primary task of the portfolio
manager.
Clearly, the optimal allocation should not violate a set of hard constraints,

such as the budget constraint, or soft constraints, such as constraints on leverage,
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risk, etc. We denote by C the set of all such constraints and by "h ∈ C" the
condition that the allocation h satisfies the given constraints.

Key concept. The Optimization Step is the process of computing
the holdings that maximize satisfaction, while not violating a given set of
investment constraints

h∗ ≡ argmax
h∈C

{S (h)} . (49)

We emphasize that the choice of the most suitable index of satisfaction S,
as well as the specific constraints C, vary widely depending on the profile of the
securities P&L distribution, the investment horizon, and other features of the
market and the investor.

Illustration. In our stock and option example we can compute the best
hedge for one call option. In this context, the general framework (49) becomes

(hs, hc)
∗ ≡ argmax

hc≡1
{−Sd {Πh}} . (50)

Then the first order condition on the P&L standard deviation, computed in
(30)-(32), yields

hs ≡ −
δBS,T
sT

− vBS,T
sT

ρ
σσ
σs
. (51)

If the correlation ρ between implied volatility and underlying were null, the
best hedge would consist in shorting a "delta" amount of underlying. In gen-
eral ρ is substantially negative: for instance, the sample correlation between
VIX and S&P 500 is ρ ≈ −0.7. Therefore, a correction to the simplistic delta
hedge must be applied.

In general, the numerical optimization (49) is a challenging task. To address
this issue one can resort to the two-step mean-variance heuristic. First, the
mean-variance efficient frontier is computed

hλ ≡ argmax
h∈C

{E {Πh}− λVr {Πh}} , λ ∈ R. (52)

This step reduces the dimension of the problem from N , the dimension of the
market, to 1, the value of λ. The optimization (52) can be solved by variations of
quadratic programming. The optimization becomes particularly efficient when
a linear factor model makes the covariance of the securities P&L’s sparse, see
Meucci (2010h).
Second, the optimal portfolio is selected by a one-dimensional search

h∗ ≡ argmax
λ∈R

{S (hλ)} . (53)
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The optimization (53) can be performed by a simple grid-search.
As it was the case for the Evaluation Step P 7, we must address estima-

tion risk, introduced in the Estimation Step P 2: the projected distribution of
the P&L that we are optimizing is only an estimate, not the true projected
distribution, which is unknown. As it turns out, the optimal portfolio is ex-
tremely sensitive to the input estimated distribution, which makes estimation
risk particularly relevant for the Optimization Step P 8.
To address the issue of estimation risk, portfolio managers rely on more

advanced approaches than the simple two-step mean-variance heuristic (52)-
(53). These advanced approaches include robust optimization, which relies on
cone programming, see Ben-Tal and Nemirovski (2001) and Cornuejols and Tu-
tuncu (2007); Bayesian allocation, see Bawa, Brown, and Klein (1979); robust
Bayesian allocation, see Meucci (2005b); and resampling, see Michaud (1998).
We refer to Meucci (2005a) for an in-depth review.
Since estimation is imperfect, tactical portfolio construction enhances per-

formance by blending market views and predictive signals into the estimated
market distribution. Well-known techniques to perform tactical portfolio con-
struction are the approach by Grinold and Kahn (1999), which mixes signals
based on linear factor models for returns; the Bayesian inspired methodology by
Black and Litterman (1990); and the generalized Bayesian approach "Entropy
Pooling" in Meucci (2008).
Due to the rapid decay of the quality of predictive tactical signals, managers

separate tactical portfolio construction from strategic rebalancing, which takes
into account shortfall and drawdown control and is optimized based on tech-
niques that range from dynamic programming to heuristics, see e.g. Merton
(1992), Grossman and Zhou (1993), Browne and Kosowski (2010), and refer to
Meucci (2010g) for a review and code.
Finally, liquidity risk, discussed in the Pricing Step P 4, impacts the Op-

timization Step: transaction costs must be paid to reallocate capital and the
process of executing a transaction impacts the execution price. Therefore, mar-
ket impact models must be embedded in the portfolio optimization process. The
standard approach in this direction is a power-law impact model, see e.g. Keim
and Madhavan (1998).

Pitfall. "...Mean-variance assumes normality...". The mean-variance ap-
proach does not assume normality: any market distribution can be fed into the
two-step process (52)-(53).

P 9 Execution
The Optimization Step P 8 delivers a desired allocation h∗ ≡ (h∗1, . . . , h∗N )

0. To
achieve the desired allocation, it is necessary to rebalance the positions from
the current allocation hT ≡ (h1,T , . . . , hN,T )0. This rebalancing is not executed
immediately. As time evolves, the external market conditions change. Simulta-
neously, the internal state of the book, represented by the updated allocation,
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the updated constraints, etc., changes dynamically. To execute a rebalancing
trade, this information must be optimally processed.

Key concept. The Execution Step processes the evolving external
market information imt and internal book information ibt to attain the
target portfolio h∗ by a sequence of transactions at given prices pt ≡
(pt,1, . . . , pt,N )

0

h∗ , {imt }t≥T ,
©
ibt
ª
t≥T 7→ {pt}t≥T . (54)

Note that often the execution step is implemented in aggregate across dif-
ferent books. This aggregation is particularly useful, as it allows for netting of
conflicting buy-sell orders from different traders or managers. Performing this
netting in the Optimization Step P 8 would be advisable, see e.g.O’Cinneide,
Scherer, and X. (2006) and Stubbs and Vandenbussche (2007). However, this
can be hard in practice.
Execution is closely related to liquidity risk, first introduced in the Pric-

ing Step P 4. The literature on liquidity, market impact, algorithmic trading
and optimal execution is very broad, see e.g. Almgren and Chriss (2000) and
Gatheral (2010).

Illustration. For illustrative purposes, we mention the simplest execu-
tion algorithm, namely "trading at all costs". This approach disregards any
information on the market or the book and delivers immediately the desired
final allocation by depleting the cash reserve. We emphasize that trading at
all costs can be heavily suboptimal.

Pitfall. "...The Execution Step P 9 should be embedded into the Optimiza-
tion Step P 9...". In practice it is not possible to process simultaneously real-time
information and all the previous steps of the Prayer. Furthermore, execution
works best across all books, whereas optimization is specific to each individual
manager.

P 10 Ex-Post Analysis
In the Execution Step P 9 we implemented the allocation h∗ ≡ (h∗1, . . . , h∗N ) for
the period between the current date T and the investment horizon T + τ . Upon
reaching the horizon, we must evaluate the P&L πh∗ realized over the horizon
by the allocation, where the lower-case notation emphasizes that the P&L is no
longer a random variable, but rather a number that we observe ex-post.
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Key concept. The Ex-Post Analysis Step identifies the contributions
to the realized P&L from different decision makers and market factors

πh∗ 7→ (πa, πb, · · · ) . (55)

Ex-post performance analysis is a broad subject that attracts tremendous
attention from practitioners, as their compensation is ultimately tied to the
results of this analysis. Ex-post performance can be broken down into two
components: performance of the target portfolio from the Optimization Step P
8 and slippage performance from the Execution Step P 9.
To analyze the ex-post performance of the target portfolio, the most basic

framework decomposes this performance into an allocation term and a selec-
tion term, see e.g. Brinson and Fachler (1985). More recent work attributes
performance to different factors, such as foreign exchange swings or yield curve
movements, consistently with the Attribution Step P 6.
The slippage component can be decomposed into unexecuted trades and

implementation shortfall attributable to market impact, see Perold (1988).
Furthermore, performance must be fairly decomposed across different peri-

ods, see e.g. Carino (1999) and Menchero (2000).

Illustration. In our stock and option example, we can decompose the
realized P&L into the cost incurred by the "trading at all costs" strategy,
a stock component, an implied volatility component, and a residual. In
particular, the stock component reads bh,s ln (sT+τ/sT ) as in (36), and the
implied volatility component reads bh,s ln (σT+τ/sT ) The residual is the plug-
in term that makes the sum of all components add up to the total realized
P&L.

Pitfall. "...I prefer geometric performance attribution, because it can be
aggregated exactly across time and across currencies...". The geometric, or mul-
tiplicative approach to ex-post performance is arguably less intuitive, because
it does not accommodate naturally a linear decomposition in terms of different
risk or decisions factors.
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A Appendix
First, consider the following rule, which holds for any square matrix a and
conformable vector x

∂
√
x0ax

∂x
=

ax√
x0ax

. (56)

To prove (44) we recall from the attribution to the risk factors (37) that the
standard deviation (41) reads

τσ2h = (Sd {Πh})
2 = τ

¡
bh,s bh,σ

¢µ σ2s σσσsρ
σσσsρ σ2σ

¶µ
bh,s
bh,σ

¶
. (57)

Then (44) follows from (56).
To prove (45), we recall that the stock P&L (19) reads

Πs ≈ sT (lnST+τ − ln sT ) (58)

and the call option P&L (22) reads

Πc ≈ (lnST+τ − ln sT ) δBS,T + (lnΣT+τ − lnσT ) vBS,T (59)

We recall from (14) that all the log-changes above are jointly normal. Therefore
the entries of covariance matrix read

τσ2Πs ≡ V {Πs} = V {sT (lnST+τ − ln sT )} = τs2Tσ
2
s (60)

τσ2Πc ≡ V {Πc} = V {(lnST+τ − ln sT ) δBS,T + (lnΣT+τ − lnσT ) vBS,T }(61)
= V {(lnST+τ − ln sT ) δBS,T }+V {(lnΣT+τ − lnσT ) vBS,T }

+2Cv {(lnST+τ − ln sT ) δBS,T , (lnΣT+τ − lnσT ) vBS,T }
= τ

¡
σ2sδ

2
BS,T + σ2σv

2
BS,T + 2σσσsρδBS,T vBS,T

¢
τσΠs,Πc ≡ Cv {Πs,Πc} = Cv{sT (lnST+τ − ln sT ) , (62)

(lnST+τ − ln sT ) δBS,T + (lnΣT+τ − lnσT ) vBS,T }
= Cv {sT (lnST+τ − ln sT ) , (lnST+τ − ln sT ) δBS,T }

+Cv {sT (lnST+τ − ln sT ) , (lnΣT+τ − lnσT ) vBS,T }
= τ

¡
δBS,T sTσ

2
s + sT vBS,Tσσσsρ

¢
,

where Cv {X,Y } denotes the covariance between X and Y .
As in (29), the portfolio P&L reads

Πh = hsΠs + hcΠc (63)

Thus the standard deviation (41) reads

(Sd {Πh})2 = τ
¡
hs hc

¢µ σ2Πs σΠs,Πc
σΠs,Πc σ2Πc

¶µ
hs
hc

¶
(64)

Then (45) follows from (56).
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